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Background: Implicit Models
• DEQ-style Implicit Models [1]

• Given a union � of the parameters � and the injection � = ℳ �  from the input data �
• The output of the equilibrium module ℱ is defined as the equilibrium point �∗ of the 

dynamics,
�∗ = ℱ �∗,  � .

• Post-processing module �: � = � �∗  and Loss function ℒ, etc. 

• Implicit Differentiation
• Differentiate the dynamics via Implicit Function Theorem (IFT). 

        
        [1] Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models
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Motivation
• Implicit Differentiation

• Differentiate the dynamics via Implicit Function Theorem (IFT).

• Motivation:
• 1. Expense cost for the inverse in the exact gradient, e.g., �ℱ �� is of 106 × 106 size.

• 2. The conditioning issue and the numerical stability.

• 3. Moderate gradient noise can help generalization.

�ℒ
��

=
��∗

��
�ℒ
��∗

=
�ℱ
��

 � −
�ℱ
��

 
−1 �ℒ
��∗



Key Ideas
• We calculate the exact but expensive gradient via IFT.

• Our target? 
• Calculate the (exact but expensive) gradient?      No.           ---------      Method
• Train the implicit models?                                      Yes!          ---------      Target

• Gradient noise is acceptable for the optimization purpose.
• SGD is naturally noisy!

• Phantom Gradient: �ℒ
�� ≜ �
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General Condition 
• Theorem 1. Let �max and �min be the maximal and minimal singular values of �ℱ/��. If
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• then the phantom gradient provides an “ascent” direction of the function ℱ, i.e.,
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Instantiations
• Unrolling-based Phantom Grad (UPG)

• Considering the the damped fixed-point iteration,

��+1 = �ℱ ��,  � +  1 − � ��,   � = 0,  1,  ⋯,  � − 1.
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• Neumann-series-based Phantom Grad (NPG)
• Considering the the damped fixed-point iteration,

��,�
neu = �

�ℱ
�� �∗

 � + � + �� +⋯+��−1 ,where � = �
�ℱ
�� �∗

+  1 − � �.



Pseudo Code for UPG



Pseudo Code for NPG



Convergence Analysis
• Theorem 3. Suppose the loss function ℛ is ℓ-smooth,  lower-bounded, and has bounded 

gradient almost surely in the training process. Besides, assume the gradient �ℒ/�� is an 
unbiased estimator of �ℛ(�) with a bounded covariance. If the phantom gradient in is an �-
approximation to �ℒ/��, i.e.,
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• then using the phantom gradient as a stochastic first-order oracle with a step size of �� = � 1/
�  to update � with gradient descent,  it follows after � iterations that
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Experiments
• Precision: the gap between the phantom gradient and the exact gradient?

• Synthetic settings
• Practical scenario

• Influences of hyperparameters � and �?

• Computation cost
• Phantom gradient compared with implicit differentiation?

• Phantom gradient at scale
• Vision, Language, Graph
• DEQ, MDEQ, IGNN
• …



Static Precision



Dynamic Precision
• Histogram of cosine similarity between 

phantom gradient and implicit differentiation 
along the training.

• Phantom gradients preserve a high precision 
during the training dynamics. 



Hyperparameters



Phantom Grad at Scale

12× acceleration 
for the backward！



Phantom Grad at Scale



Phantom Grad at Scale



Take Away

• Precise gradient estimates are not always required, especially for a black box layer like our 
lovely implicit models!

• Phantom gradients can train implicit models to SOTA much faster.

• ...

• See more findings in our paper!



Thank you!


