On Training Implicit Models

Zhengyang Geng¹, Xin-Yu Zhang¹, Shaojie Bai² Yisen Wang¹, Zhouchen Lin^{1,3}

¹Peking University, ²Carnegie Mellon University, ³Pazhou Lab

Background: Implicit Models

- DEQ-style Implicit Models [1]
 - Given a union z of the parameters θ and the injection $u = \mathcal{M}(x)$ from the input data x
 - The output of the equilibrium module \mathcal{F} is defined as the equilibrium point h^* of the dynamics,

$$\boldsymbol{h}^* = \mathcal{F}(\boldsymbol{h}^*, \boldsymbol{z}).$$

- Post-processing module \mathcal{G} : $\hat{\mathbf{y}} = \mathcal{G}(\mathbf{h}^*)$ and Loss function \mathcal{L} , etc.
- Implicit Differentiation
 - Differentiate the dynamics via Implicit Function Theorem (IFT).

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}} = \frac{\partial \mathbf{h}^*}{\partial \mathbf{z}} \frac{\partial \mathcal{L}}{\partial \mathbf{h}^*} = \frac{\partial \mathcal{F}}{\partial \mathbf{z}} \Big|_{\mathbf{h}^*} \left(\mathbf{I} - \frac{\partial \mathcal{F}}{\partial \mathbf{h}} \Big|_{\mathbf{h}^*} \right)^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{h}^*} \qquad \qquad \qquad \qquad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial \mathbf{h}^*}{\partial \boldsymbol{\theta}} \frac{\partial \mathcal{L}}{\partial \mathbf{h}^*} = \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \left(\mathbf{I} - \frac{\partial \mathcal{F}}{\partial \mathbf{h}} \right)^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{h}^*}$$

Motivation

- Implicit Differentiation
 - Differentiate the dynamics via Implicit Function Theorem (IFT).

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial \boldsymbol{h}^*}{\partial \boldsymbol{\theta}} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^*} = \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \left(\boldsymbol{I} - \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^*}$$

- Motivation:
 - 1. Expense cost for the inverse in the exact gradient, e.g., $\partial \mathcal{F}/\partial \mathbf{h}$ is of $10^6 \times 10^6$ size.
 - 2. The conditioning issue and the numerical stability.
 - 3. Moderate gradient noise can help generalization.

Key Ideas

- We calculate the exact but expensive gradient via IFT.
- Our target?
 - Calculate the (exact but expensive) gradient? No. ----- Method
 - Train the implicit models? Yes! ----- Target
- Gradient noise is acceptable for the optimization purpose.
 - SGD is naturally noisy!

• Phantom Gradient:
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial \boldsymbol{h}^*}{\partial \boldsymbol{\theta}} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^*} = \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \left(\boldsymbol{I} - \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^*} \qquad \qquad \qquad \qquad \qquad \frac{\widehat{\partial \mathcal{L}}}{\partial \boldsymbol{\theta}} \triangleq \boldsymbol{A} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$$

General Condition

$$egin{aligned} \widehat{rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}}} := A \; rac{\partial \mathcal{L}}{\partial oldsymbol{h}} \ \end{aligned} \; \left\langle rac{\partial \mathcal{L}}{\partial \mathbf{x}}, rac{\widehat{\partial \mathcal{L}}}{\partial \mathbf{x}}
ight
angle > 0 \end{aligned}$$

• Theorem 1. Let σ_{max} and σ_{min} be the maximal and minimal singular values of $\partial \mathcal{F}/\partial \theta$. If

$$\left\| A \left(I - \frac{\partial \mathcal{F}}{\partial h} \right) - \frac{\partial \mathcal{F}}{\partial \theta} \right\| \leq \frac{\sigma_{\min}^2}{\sigma_{\max}},$$

• then the phantom gradient provides an "ascent" direction of the function \mathcal{F} , i.e.,

$$\left\langle \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \right\rangle \geq 0.$$

Instantiations

$$egin{aligned} \widehat{rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}}} := A \; rac{\partial \mathcal{L}}{\partial oldsymbol{h}} & \left\langle rac{\partial \mathcal{L}}{\partial \mathbf{x}}, rac{\widehat{\partial \mathcal{L}}}{\partial \mathbf{x}}
ight
angle > 0 \end{aligned}$$

- Unrolling-based Phantom Grad (UPG)
 - Considering the the damped fixed-point iteration,

$$h_{t+1} = \lambda \mathcal{F}(h_t, z) + (1 - \lambda)h_t, t = 0, 1, \dots, T - 1.$$

$$A_{k,\lambda}^{\text{unr}} = \lambda \sum_{t=0}^{k-1} \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{h}_t} \prod_{s=t+1}^{k-1} \left(\lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}_s} + (1 - \lambda) \boldsymbol{I} \right)$$

- Neumann-series-based Phantom Grad (NPG)
 - Considering the the damped fixed-point iteration,

$$A_{k,\lambda}^{\text{neu}} = \lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{h}^*} (\boldsymbol{I} + \boldsymbol{B} + \boldsymbol{B}^2 + \dots + \boldsymbol{B}^{k-1}), \text{ where } \boldsymbol{B} = \lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}^*} + (1 - \lambda) \boldsymbol{I}.$$

Pseudo Code for UPG

Algorithm 1 Unrolling-based phantom gradient, PyTorch-style

```
# solver: the solver to find h^*, e.g., the Broyden solver in MDEQ.
# func: the explicit function \mathcal{F} that defines the implicit model.
# z: the input variables z to solve h^* = \mathcal{F}(h^*,z)
# h: the solution h^* of the implicit models.
# training: a bool variable that indicates training or inference.
# k: the unrolling step k.
# lambda_: the damping factor \lambda.
# a plain forward pass using Pytorch
# calculate the phantom gradient by automatic differentiation
# input: z & output: h
def forward(z):
   with torch.no_grad():
       h = solver(func, z)
   # define the computational graph for the backward pass.
   # only used in the training stage
   if training:
       for _ in range(k):
           h = (1 - lambda_) * h + lambda_ * func(h, z)
   return h
```

Pseudo Code for NPG

Algorithm 2 Neumann-series-based Phantom Gradient, Pytorch-style

```
# solver: the solver to find h^*, e.g., the Broyden solver in MDEQ.
# func: the explicit function \mathcal F that defines the implicit model.
# grad(a, b, c): the function to compute the Jacobian-vector product (\partial a/\partial b)c
# z: the input variables z to solve h^* = \mathcal{F}(h^*,z)
# h: the output h^* of the implicit model.
# k: the unrolling step k.
# lambda_: the damping factor \lambda.
# a plain forward pass using Pytorch
# input: z & output: h
def forward(z):
   with torch.no_grad():
       h = solver(func, z)
    return h
# phantom gradient for the backward pass
# input: dl/ dh & output: dl / dz
def phantom_grad(g):
   # forward pass for automatic differentiation
   f = (1 - lambda_) * h + lambda_ * func(h, z)
    g_hat = g
   for _ in range(k-1):
       # compute Jacobian-vector product with automatic differentiation
       g_hat = g + grad(f, h, g_hat)
    # compute Jacobian-vector product to obtain dl / dz
    g_hat = grad(f, z, g_hat)
    return g_hat
```


Convergence Analysis $\frac{\widehat{\partial \mathcal{L}}}{\partial \boldsymbol{\theta}} := A \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}} \qquad \left\langle \frac{\partial \mathcal{L}}{\partial \mathbf{x}}, \frac{\widehat{\partial \mathcal{L}}}{\partial \mathbf{x}} \right\rangle > 0$

$$rac{\widehat{\mathcal{L}}}{\partial oldsymbol{ heta}} := A \; rac{\partial \mathcal{L}}{\partial oldsymbol{h}} \qquad \left\langle rac{\partial \mathcal{L}}{\partial \mathbf{x}}, rac{\widehat{\partial \mathcal{L}}}{\partial \mathbf{x}}
ight
angle >$$

Theorem 3. Suppose the loss function \mathcal{R} is ℓ -smooth, lower-bounded, and has bounded gradient almost surely in the training process. Besides, assume the gradient $\partial \mathcal{L}/\partial \theta$ is an unbiased estimator of $\nabla \mathcal{R}(\theta)$ with a bounded covariance. If the phantom gradient in is an ε approximation to $\partial \mathcal{L}/\partial \boldsymbol{\theta}$, i.e.,

$$\left\| \frac{\partial \widehat{\mathcal{L}}}{\partial \boldsymbol{\theta}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \right\| \le \varepsilon$$
, almost surely,

then using the phantom gradient as a stochastic first-order oracle with a step size of η_{τ} = O(1/2) $\sqrt{\tau}$) to update θ with gradient descent, it follows after T iterations that

$$\mathbb{E}\left[\frac{\sum_{\tau=1}^{T} \eta_{\tau} \|\nabla \mathcal{R}(\boldsymbol{\theta}_{\tau})\|^{2}}{\sum_{\tau=1}^{T} \eta_{\tau}}\right] \leq O\left(\varepsilon + \frac{\log T}{\sqrt{T}}\right).$$

Experiments

- Precision: the gap between the phantom gradient and the exact gradient?
 - Synthetic settings
 - Practical scenario
- Influences of hyperparameters k and λ ?
- Computation cost
 - Phantom gradient compared with implicit differentiation?
- Phantom gradient at scale
 - Vision, Language, Graph
 - DEQ, MDEQ, IGNN
 - ...

Static Precision

Figure 1: Cosine similarity between the phantom and the exact gradients in the synthetic setting.

Dynamic Precision

 Histogram of cosine similarity between phantom gradient and implicit differentiation along the training.

 Phantom gradients preserve a high precision during the training dynamics.

Hyperparameters

Figure 3: Ablation studies on (a) the hyperparameters λ and k, and (b) two forms of phantom gradient.

Phantom Grad at Scale

Table 3: Large-scale experiments on CIFAR-10 and ImageNet classifications. Using phantom gradients, we are able to achieve comparable or better performance in these high-dimensional settings, while being much faster at training.

Task	Method	Params	Acc(%)	Speed	Peak Mem
CIFAR-10	MDEQ + Implicit	10M	93.8	$1\times$	$1 \times$
CIFAR-10	MDEQ + UPG $A_{5,0.5}$	10M	95.0	$1.4 \times$	$0.5 \times$
ImageNet	MDEQ + Implicit	18M	75.3	1×	1×
ImageNet	MDEQ + UPG $A_{6,0.5}$	18M	75.7	$1.7 \times$	$1 \times$

12× acceleration for the backward!

Phantom Grad at Scale

Table 3: Experiments using DEQ [2] and MDEQ [3] on vision and language tasks. Metrics stand for accuracy(%)↑ for image classification on CIFAR-10 and ImageNet, and perplexity↓ for language modeling on Wikitext-103. JR stands for Jacobian Regularization [17]. † indicates additional iterations in the forward equilibrium solver.

Datasets	Model	Method	Params	Metrics	Speed
CIFAR-10	MDEQ	Implicit	10 M	$93.8 (\pm 0.17)$	$1\times$
CIFAR-10	MDEQ	UPG $A_{5,0.5}$	10 M	$95.0 (\pm 0.16)$	$1.4 \times$
ImageNet	MDEQ	Implicit	18M	75.3	1×
ImageNet	MDEQ	UPG $m{A}_{5,0.6}$	18M	75.7	1.7×
Wikitext-103	DEQ (PostLN)	Implicit	98M	24.0	1×
Wikitext-103	DEQ (PostLN)	UPG $A_{5,0.8}$	98M	25.7	$1.7 \times$
Wikitext-103	DEQ (PreLN)	JR + Implicit	98M	24.5	1.7×
Wikitext-103	DEQ (PreLN)	$\operatorname{JR} + \operatorname{UPG} A_{5,0.8}$	98M	24.4	$2.2 \times$
Wikitext-103	DEQ (PreLN)	JR + UPG $A_{5,0.8}$	98M	24.0^{\dagger}	$1.7 \times$

Phantom Grad at Scale

Table 4: Experiments using IGNN [4] on graph tasks. Metrics stand for accuracy(%)↑ for graph classification on COX2 and PROTEINS, Micro-F1(%)↑ for node classification on PPI.

Datasets	Model	Method	Params	Metrics
COX2	IGNN	Implicit	38K	84.1±2.9
COX2	IGNN	UPG $A_{5,0.5}$	38K	83.9 ± 3.0
COX2	IGNN	UPG $A_{5,1.0}$	38K	83.0 ± 2.9
PROTEINS	IGNN	Implicit	34K	78.6 ± 4.1
PROTEINS	IGNN	UPG $A_{5,0.5}$	34K	78.4 ± 4.2
PROTEINS	IGNN	UPG $A_{5,1.0}$	34K	78.8 ± 4.2
PPI	IGNN	Implicit	4.7M	97.6
PPI	IGNN	UPG $A_{5,0.5}$	4.7M	98.2
PPI	IGNN	UPG $A_{5,1.0}$	4.7M	96.2

Take Away

 Precise gradient estimates are not always required, especially for a black box layer like our lovely implicit models!

Phantom gradients can train implicit models to SOTA much faster.

•

See more findings in our paper!

Thank you!