
On Training Implicit Models

Background
Ø Implicitly-defined neural networks have achieved competitive performances 

compared with explicit models.

Ø Implicit models treat the evolution of hidden states as certain dynamics, e.g., 
fixed-point equations or ordinary differential equations (ODEs);

Ø The forward passes are formulated as black-box solvers of the underlying 
dynamics, and the backward passes are performed via implicit differentiation.

Ø In this work, we argue that a carefully designed inexact gradient, named phantom 
gradient, is sufficient to efficiently and effectively train implicit models.
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Implicit Differentiation
 We adopt the formulation of DEQ models [1].

Ø Input projection module ℳ: � = ℳ � , where � is the input data;

Ø Equilibrium module ℱ and the equilibrium state �∗ given by
�∗ = ℱ �∗,  � ,

where � is a union of the module’s input � and parameters �;

Ø Post-processing module �: � = � �∗ , where � is the predicted label of �;

Ø Loss function ℒ and the training objective, i.e., the expected loss:
ℛ � = � �,� ~� ℒ � �; � ,  �  ,

where � is the true label of �.

Ø Using Implicit Differentiation, the gradient of �∗ w.r.t. � is given by
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The gradient of ℒ w.r.t. � is thus given by
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Phantom Gradient
Ø Definition. The Jacobian ��∗/�� is approximated by a matrix �:
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Ø General Descent Condition.

Theorem 1. Let �max and �min be the maximal and minimal singular value of �ℱ/
��. If
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then the phantom gradient provides an ascent direction of the function ℱ, i.e.,
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Ø Instantiations.

a. Unrolling-based Phantom Gradient (UPG). Consider the damped fixed-point 
iteration:

��+1 = �ℱ ��,  � +  1 − � ��,   � = 0,  1,  ⋯,  � − 1.

Then, the matrix � is given by
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b. Neumann-series-based Phantom Gradient (NPG). The matrix � is given by
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Ø Convergence Theory.

Theorem 3. Suppose the loss function ℛ is ℓ-smooth,  lower-bounded, and has 
bounded gradient almost surely in the training process. Besides, assume the gradient 
�ℒ/�� is an unbiased estimator of ∇ℛ(�) with a bounded covariance. If the phantom 
gradient in is an �-approximation to �ℒ/��, i.e.,
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then using the phantom gradient as a stochastic first-order oracle with a step size of 
�� = � 1/ �  to update � with gradient descent,  it follows after � iterations that
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Ø Complexity.

Let Mem denote the memory cost, and � and � be the solver’s steps and the 
unrolling/Neumann steps, respectively. Here, � ≫ � ≈ 1.

Experiments
Ø Cosine similarity between the phantom gradient and the exact gradient in the 

synthetic setting (see paper for details);

arXiv:    https://arxiv.org/abs/2111.05177
Github: https://github.com/Gsunshine/phantom_grad
Email:   zhengyanggeng@gamil.com

References

Ø Impact of hyperparameters � and � on the CIFAR-10 classification accuracy;

Ø Large-scale experiments;

Ø [1] Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models.

Ø [2] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, Laurent El Ghaoui. Implicit Graph Neural Netowrks.

Future Perspectives

Ø Implicit GNN [2] model on graph tasks. 

Ø The phantom gradient may come with a structured bias in comparison with the 
exact one; how to eliminate the structured bias?

Ø The UPG and its precision in the training process suggest developing an adaptive 
gradient solver.

Ø (Aggressive) The loss landscape and the training strategy are the two sides of the 
same coin; how to study their interaction in training implicit models?


