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~ Background: ~N — Phantom Gradient N~ Experiments N

» Implicitly-defined neural networks have achieved competitive performances » Definition. The Jacobian ~ / is\approximated by a matrix : » Cosine similarity between the phantom gradient and the exact gradient in the
compared with explicit models. L L synthetic setting (see paper for details);
> Implicit model he evolution of hidd in dynami S e “ =i
mplicit Tno els tfeatt ¢ GV(? ution .0 1 .en states.as certain dynamics, e.g., > General Descent Condition. T . .
fixed-point equations or ordinary differential equations (ODESs); . o . ; v ;
Theorem 1. Let 5% and i, be the maximal and minimal singular value of  / 3° . .
» The forward passes are formulated as black-box solvers of the underlying If 7, ; ;
dynamics, and the backward passes are performed via implicit differentiation. B B - rznin ; , ;
» In this work, we argue that a carefully designed inexact gradient, named phantom max T comesminy T comasminy T comesmiay T comesmtny
. . . . . .. .. 1 1 " . ’ ; (a) Phantom gradient in the Neumann form (b) Phantom gradient in the unrolling form
\_ gradient, 1s sufficient to efficiently and effectively train implicit models. ) then the phantom gradient provides azl\ascent direction of the function , i.e., | . | t, | ,
0 » Impact of hyperparameters and on the CIFAR-10 classification accuracy;
— — =0.
~Implicit Differentiation ~ -
We adopt the formulation of DEQ models [1]. » Instantiations. N
> Input projection module : = , where is the input data; a. Unrolling-based Phantom Gradient (UPG). Consider the damped fixed-point - i
o o | iteration: g k
» Equilibrium module  and the equilibrium state ~ given by 4 = o+ 11— =01, ., -1
- b Then, the matrix 1s given by N
where 1s a union of the module’s input and parameters ; nr - - = azes
— - - + 1 - 1 2 3 a 5 6 7 8 9
» Post-processing module :° = , where ~ 1s the predicted label of ; —0 I > Large-scale experiments:
» Loss function and the training objective, i.e., the expected loss: b. Neumann-series-based Phantom Gradient (NPG). The matrix 1s given by Datasets Model Method Params Metrics Speed
— N -~ | neu — _ + o+ + 4+ -1 — 41— CIFAR-10 MDEQ Implicit 10M 93.8£0.17 1.0x
! ,  Where 1 CIFAR-10  MDEQ UPG As o5 IOM  95.0+0.16 1.4x
where 1s the true label of > C Th ImageNet MDEQ Implicit 1I8M  75.3 1.0x
onvergence 1heory. ImageNet MDEQ UPG A5 6 I8M 757 1.7x
» Using Implicit Differentiation, the gradient of ~ w.rt.  is given by Theorem 3. Suppose the loss function is €-smooth, lower-bounded, and has Wikitext-103 DEQ (PostLN)  Implicit 0O8M  24.0 1.0
-1 bounded gradient almost surely in the training process. Besides, assume the gradient Wikitext-103 DEQ (PostLN) UPG Aj; o5 O8M  25.7 L7
— = — - — . /  is an unbiased estimator of () with a bounded covariance. If the phantom Wikitext-103 DEQ (PreLN)  JR + Implicit O8M 245 1.7x
gradient in is an -approximationto [/ ,i.e., Wikitext-103 DEQ (PreLN)  JR + UPG A; g 5 O8M 24.4 2.2z
The gradient of wrz. s thus given by — Wikitext-103 DEQ (PreLN) JR+UPG As05  98M 240 1.7x
— < , almostsurely,
-1 » Implicit GNN [2] model on graph tasks.
— - T - then using the phantom gradient as a stochastic first-order oracle with a step size of Datasets  Model Method Params Metrics (%)
= 1/y/ toupdate with gradient descent, it follows after iterations that COX2 IGNN  Implicit 38K 84.1+29
\ ) 2 | COX2 IGNN UPG A; 5 38K 83.9 + 3.0
) =1 () - L 199 COX2 IGNN UPG Asqs 38K  83.9+27
futuf’/e ?eyspectlves — NE ' COX2 IGNN UPG A5 4 38K 83.0 £ 2.9
/ \ =1 PROTEINS IGNN  Implicit 34K 78.6 4.1
» The phantom gradient may come with a structured bias in comparison with the » Complexity. ggg%gﬁg igﬁg Sig i:g; gjﬁ ;gé i ig
exact one; how to eliminate the structured bias? Let Mem denote the memory cost,and and be the solver’s steps and the PROTEINS IGNN UPG As;o 34K 788442
, L o , , unrolling/Neumann steps, respectively. Here, = 1. S IGNN  Implicit 4.7M  97.6
» The UPG and its precision in the training process suggest developing an adaptive s P P Y gg iggg gﬁg iﬁ,(}.s j-gﬁ 3?2
. Ty ‘ 5,0.8 . -
gradient solver. Method | Time Mem Peak Mem \ PPI IGNN UPGAs,, 47M  96.2 y
Implicit | O(K) O(1) O(k)
> (Aggressive) The loss landscape and the training strategy are the two sides of the UPG Ok) O(k) O(k) References
same coin; how to study their interaction in training implicit models? NPG Ok) 0O(1) O(1) > [1] Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models.
»  [2] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, Laurent El Ghaoui. Implicit Graph Neural Netowrks.
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