On Training Implicit Models

Zhengyang Geng^{1,2}, Xin-Yu Zhang², Shaojie Bai³, Yisen Wang², Zhouchen Lin^{2,4}
¹Zhejiang Lab, ²Peking University, ³Carnegie Mellon University, ⁴Pazhou Lab

arXiv: https://arxiv.org/abs/2111.05177

Github: https://github.com/Gsunshine/phantom_grad

Email: zhengyanggeng@gamil.com

-Background-

- > Implicitly-defined neural networks have achieved competitive performances compared with explicit models.
- ➤ Implicit models treat the evolution of hidden states as certain dynamics, *e.g.*, fixed-point equations or ordinary differential equations (ODEs);
- The forward passes are formulated as black-box solvers of the underlying dynamics, and the backward passes are performed via implicit differentiation.
- ➤ In this work, we argue that a carefully designed inexact gradient, named phantom gradient, is sufficient to efficiently and effectively train implicit models.

-Implicit Differentiation-

We adopt the formulation of DEQ models [1].

- \triangleright Input projection module \mathcal{M} : $u = \mathcal{M}(x)$, where x is the input data;
- Fequilibrium module \mathcal{F} and the equilibrium state h^* given by $h^* = \mathcal{F}(h^*, z)$,

where z is a union of the module's input u and parameters θ ;

- \triangleright Post-processing module \mathcal{G} : $\hat{\mathbf{y}} = \mathcal{G}(\mathbf{h}^*)$, where $\hat{\mathbf{y}}$ is the predicted label of \mathbf{x} ;
- \triangleright Loss function \mathcal{L} and the training objective, *i.e.*, the expected loss:

$$\mathcal{R}(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{P}}[\mathcal{L}(\widehat{\boldsymbol{y}}(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})],$$

where y is the true label of x.

 \triangleright Using Implicit Differentiation, the gradient of h^* w.r.t. z is given by

$$\frac{\partial \boldsymbol{h}^*}{\partial \boldsymbol{z}} = \frac{\partial \mathcal{F}}{\partial \boldsymbol{z}} \Big|_{\boldsymbol{h}^*} \left(\boldsymbol{I} - \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}^*} \right)^{-1}.$$

The gradient of \mathcal{L} w.r.t. \mathbf{z} is thus given by

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{z}} = \frac{\partial \boldsymbol{h}^*}{\partial \boldsymbol{z}} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}} = \frac{\partial \mathcal{F}}{\partial \boldsymbol{z}} \Big|_{\boldsymbol{h}^*} \left(\boldsymbol{I} - \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}^*} \right)^{-1} \frac{\partial \mathcal{L}}{\partial \boldsymbol{h}^*}.$$

Future Perspectives

- The phantom gradient may come with a structured bias in comparison with the exact one; how to eliminate the structured bias?
- The UPG and its precision in the training process suggest developing an adaptive gradient solver.
- ➤ (Aggressive) The loss landscape and the training strategy are the two sides of the same coin; how to study their interaction in training implicit models?

– Phantom Gradient –

▶ Definition. The Jacobian $\partial h^*/\partial \theta$ is approximated by a matrix **A**:

$$\frac{\widehat{\partial \mathcal{L}}}{\partial \boldsymbol{\theta}} \triangleq \boldsymbol{A} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}.$$

➤ General Descent Condition.

Theorem 1. Let σ_{max} and σ_{min} be the maximal and minimal singular value of $\partial \mathcal{F}/\partial \theta$. If

$$\left\| A \left(I - \frac{\partial \mathcal{F}}{\partial h} \right) - \frac{\partial \mathcal{F}}{\partial \theta} \right\| \leq \frac{\sigma_{\min}^2}{\sigma_{\max}},$$

then the phantom gradient provides an ascent direction of the function \mathcal{F} , *i.e.*,

$$\left\langle \frac{\widehat{\partial \mathcal{L}}}{\partial \boldsymbol{\theta}}, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \right\rangle \geq 0.$$

- > Instantiations.
- **a.** Unrolling-based Phantom Gradient (UPG). Consider the damped fixed-point iteration:

$$h_{t+1} = \lambda \mathcal{F}(h_t, z) + (1 - \lambda)h_t, t = 0, 1, \dots, T - 1.$$

Then, the matrix **A** is given by

$$A_{k,\lambda}^{\text{unr}} = \lambda \sum_{t=0}^{k-1} \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{h}_t} \prod_{s=t+1}^{k-1} \left(\lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}_s} + (1-\lambda) \boldsymbol{I} \right)$$

b. Neumann-series-based Phantom Gradient (NPG). The matrix A is given by

$$A_{k,\lambda}^{\text{neu}} = \lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{h}^*} (\boldsymbol{I} + \boldsymbol{B} + \boldsymbol{B}^2 + \dots + \boldsymbol{B}^{k-1}), \text{ where } \boldsymbol{B} = \lambda \frac{\partial \mathcal{F}}{\partial \boldsymbol{h}} \Big|_{\boldsymbol{h}^*} + (1 - \lambda) \boldsymbol{I}.$$

> Convergence Theory.

Theorem 3. Suppose the loss function \mathcal{R} is ℓ -smooth, lower-bounded, and has bounded gradient almost surely in the training process. Besides, assume the gradient $\partial \mathcal{L}/\partial \boldsymbol{\theta}$ is an unbiased estimator of $\nabla \mathcal{R}(\boldsymbol{\theta})$ with a bounded covariance. If the phantom gradient in is an ε -approximation to $\partial \mathcal{L}/\partial \boldsymbol{\theta}$, *i.e.*,

$$\left\| \frac{\partial \widehat{\mathcal{L}}}{\partial \boldsymbol{\theta}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \right\| \leq \varepsilon$$
, almost surely,

then using the phantom gradient as a stochastic first-order oracle with a step size of $\eta_n = O(1/\sqrt{n})$ to update θ with gradient descent, it follows after N iterations that

$$\mathbb{E}\left[\frac{\sum_{n=1}^{N} \eta_n ||\nabla \mathcal{R}(\boldsymbol{\theta}_n)||^2}{\sum_{n=1}^{N} \eta_n}\right] \leq O\left(\varepsilon + \frac{\log N}{\sqrt{N}}\right).$$

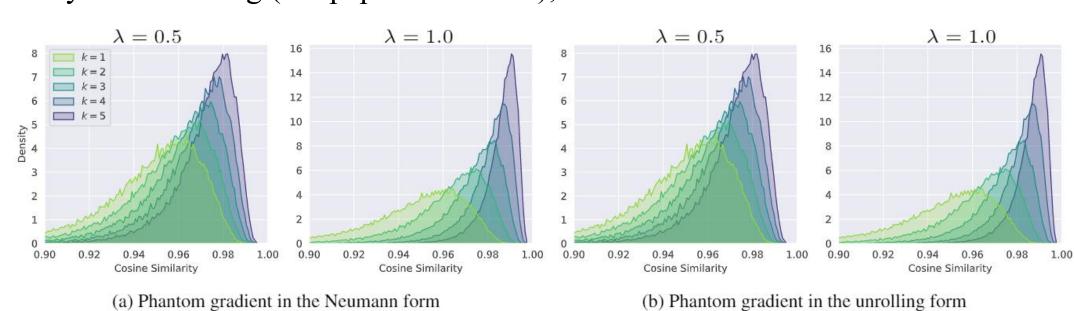
> Complexity.

Let **Mem** denote the memory cost, and K and k be the solver's steps and the unrolling/Neumann steps, respectively. Here, $K \gg k \approx 1$.

Method	Time	Mem	Peak Mem
Implicit	$\mathcal{O}(K)$	$\mathcal{O}(1)$	$\mathcal{O}(k)$
UPG	$\mathcal{O}(k)$	$\mathcal{O}(k)$	$\mathcal{O}(k)$
NPG	$\mathcal{O}(k)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$

-Experiments

Cosine similarity between the phantom gradient and the exact gradient in the synthetic setting (see paper for details);



 \triangleright Impact of hyperparameters λ and k on the CIFAR-10 classification accuracy;

Large-scale experiments;

Datasets	Model	Method	Params	Metrics	Speed
CIFAR-10	MDEQ	Implicit	10M	93.8 ± 0.17	1.0×
CIFAR-10	MDEQ	UPG $A_{5,0.5}$	10M	95.0 ± 0.16	$1.4 \times$
ImageNet	MDEQ	Implicit	18M	75.3	1.0×
ImageNet	MDEQ	UPG $A_{5,0.6}$	18M	75.7	1.7×
Wikitext-103	DEQ (PostLN)	Implicit	98M	24.0	1.0×
Wikitext-103	DEQ (PostLN)	UPG $A_{5,0.8}$	98M	25.7	$1.7 \times$
Wikitext-103	DEQ (PreLN)	JR + Implicit	98M	24.5	$1.7 \times$
Wikitext-103	DEQ (PreLN)	$JR + UPG A_{5,0.8}$	98M	24.4	$2.2 \times$
Wikitext-103	DEQ (PreLN)	$JR + UPG A_{5,0.8}$	98M	24.0^{\dagger}	1.7×

> Implicit GNN [2] model on graph tasks.

Datasets	Model	Method	Params	Metrics (%)
COX2	IGNN	Implicit	38K	84.1 ± 2.9
COX2	IGNN	UPG $A_{5,0.5}$	38K	83.9 ± 3.0
COX2	IGNN	UPG $A_{5,0.8}$	38K	83.9 ± 2.7
COX2	IGNN	UPG $A_{5,1.0}$	38K	83.0 ± 2.9
PROTEINS	IGNN	Implicit	34K	78.6 ± 4.1
PROTEINS	IGNN	UPG $A_{5,0.5}$	34K	78.4 ± 4.2
PROTEINS	IGNN	UPG $A_{5,0.8}$	34K	78.6 ± 4.2
PROTEINS	IGNN	UPG $A_{5,1.0}$	34K	78.8 ± 4.2
PPI	IGNN	Implicit	4.7M	97.6
PPI	IGNN	UPG $A_{5,0.5}$	4.7M	98.2
PPI	IGNN	UPG $A_{5,0.8}$	4.7M	97.4
PPI	IGNN	UPG $A_{5,1.0}$	4.7M	96.2

– References

- > [1] Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models.
- > [2] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, Laurent El Ghaoui. Implicit Graph Neural Netowrks.